The Hamilton–Waterloo Problem for Triangle-Factors and Heptagon-Factors
نویسندگان
چکیده
منابع مشابه
a framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولproficiency level and factors fostering reticence in efl learners
according to cheng (1999), in recent esl/efl literature, asian (especially east asian) learners of english as a foreign/second language have been arguably reported as reticent and passive learners. the most common allegations are that these students are reluctant to participate in classroom discourse; they are unwilling to give responses; they do not ask questions; and they are passive and over...
15 صفحه اولOn the Hamilton-Waterloo problem with triangle factors and C3x-factors
The Hamilton-Waterloo Problem (HWP) in the case of Cm-factors and Cn-factors asks whether Kv, where v is odd (or Kv − F , where F is a 1-factor and v is even), can be decomposed into r copies of a 2-factor made either entirely of m-cycles and s copies of a 2-factor made entirely of n-cycles. In this paper, we give some general constructions for such ∗ This work is supported by the Scientific an...
متن کاملTriangle factors in random graphs
A triangle factor of a graph G = (V,E) on n = |V | = 3k vertices, is a subgraph of G consisting of k vertex-disjoint triangles. A result by Krivelevich [9] states that a triangle factor exists in the random graph G(n, p), n = 3k, with probability 1− o(1) if p = Ω(n−2/3+1/15). This was further improved by Jeong Han Kim in [7] to p = ω(n−2/3+1/18). In this paper we improve this to p = n−2/3+o(1)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2015
ISSN: 0911-0119,1435-5914
DOI: 10.1007/s00373-015-1570-1